НАЧАЛО
оглавление

РТВ - ЭТО ОЧЕНЬ ПРОСТО!

#3

© Песах Рафаэлович Амнуэль, 1999
p_amnuel@list.ru

Курс лекций по развитию творческого воображения и теории решения изобретательских задач для начинающих.

В тексте использованы некоторые задачи по ТРИЗ и РТВ из книг и статей Г.С.Альтшуллера, Б.Л.Злотина, А.В.Зусман и других авторов.


ЭТАЖИ ВООБРАЖЕНИЯ

ШУСТРЫЕ МАЛЫШИ

БЫЛ ЛИ ГУЛЛИВЕР ЛИЛИПУТОМ?

О, ПОЛЕ, ПОЛЕ...

ТАЙНЫ "ВЕПОЛЕЙ"

ФИЗИКА И ФАНТАСТИКА

КУРТКА НА ШАРОВОЙ МОЛНИИ

ОБЫЧНЫЕ РОБОТЫ ФАНТАСТИКИ

"ТИТАН" ПОДНИМАЕТ ЯКОРЬ

ВСЕГО ЛИШЬ "ЛЕТАЮЩИЕ ТАРЕЛКИ"


 

ЭТАЖИ ВООБРАЖЕНИЯ

Неплохое воображение у писателей-фантастов (впрочем, не у всех).

Между тем, как мы уже видели, большинство фантастических идей придумано по вполне стандартным приемам. Есть приемы простые, мы о них говорили. Есть приемы посложнее. Например, "этажная схема", придуманная писателем-фантастом Г.Альтовым.

 
Как взобраться на "этажи воображения"? Выберем объект, развитие которого мы хотим спрогнозировать. Например, космический скафандр. И спросим себя: а для какой цели он существует? Скафандр необходим, чтобы оградить человека от влияния космоса: от вакуума, жесткого излучения... Вот, что важно: выбрать объект и цель. Первый этаж - использование одного объекта (в нашем случае - скафандра). Это, конечно, давно не фантастика: достаточно вспомнить А.Леонова. Но заметьте: это не фантастика сейчас, а лет сто назад рассказ о том, как человек нацепил скафандр и вышел в космос, был точным предвидением!
 

Этаж второй - используется много скафандров. Например, люди расселяются в космосе, создаются "эфирные города", описанные К.Э.Циолковским. Но что такое "много"? Пятьсот? Или пятьсот тысяч?

А.Беляев в "Звезде КЭЦ" писал о космическом городе, где живут сотни человек. В "Туманности Андромеды" И.Ефремова в космосе обитают миллионы. А если человек победит-таки природу на Земле и вынужден будет переселиться в космос, то каждый из нас будет обладателем персонального скафандра. Или даже десятка - скафандр для работы, для прогулки, для посещения заповедника на Земле... Кстати, такой роман еще не написан, вполне прогностичая идея ждет автора. Возможны варианты: очень много скафандров, небольшое число скафандров... Скажем, наступят времена, когда выпуск скафандров будет количественно ограничен, производство скафандров свернется, когда их полное число достигнет, скажем, пятисот (или пятисот тысяч). Фантастическое допущение создает сюжетные коллизии (скафандр - редкость, за обладание им идет жестокая борьба) и позволяет на этом воображаемом полигоне проверить те или иные тенденции реальной космонавтики, но позволяет найти и нечто новое в характере героев.

 
А перед нами третий этаж: достижение той же цели, но без использования объекта (в данном случае - скафандра). Человек защищен от влияния космоса, однако, скафандра на нем нет. Если на первых двух этажах число объектов возрастало, то теперь произошел качественный скачок (вот, что труднее всего дается ученым-футурологам, вот где фантаст выходит вперед!). Нужно придумать качественно новую ситуацию, предсказать изобретение или открытие будущего. Третий этаж для объекта "скафандр" - киборгизация человека, создание разумных существ, соединяющих в себе лучшие качества человека и машины. Те части человеческого тела, которые, будучи искусственными, станут функционировать лучше данных нам природой, в будущем непременно будут заменены. В космосе не нужно дышать, и у будущих космических путешественников "ампутируют" легкие, заменив их более простым устройством, способным накачивать в кровь кислород.

Фантасты первыми разглядели такую возможность в эволюции человека. Один из прообразов литературных киборгов появился в 1911 году в рассказе Д.Ингленда "Человек со стеклянным сердцем". Киборг, управляющий космическим кораблем, описан Г.Каттнером в рассказе "Маскировка". Человек, работающий без скафандра в условиях космоса или чужой планеты, - тема таких прекрасных произведений, как "Город" К.Саймака (1944 год), "Зовите меня Джо" П.Андерсона (1957 год), "Далекая Радуга" А. и Б.Стругацких (1964 год) и др.

 
Поднимемся еще выше - на четвертый этаж. Ситуация, когда вовсе отпадает необходимость в достижении поставленной цели. В нашем примере это ситуация, когда не нужно защищать человека от космоса, потому что космос для человека безвреден. То есть, в космосе есть воздух, чтобы дышать. Откуда? Перечитайте повесть Г.Альтова "Третье тысячелетие" (1974 год). Идея такая: нужно распылить Юпитер, превратить его вещество в пыль, газ. Вокруг Солнца образуется газовый диск, внутри которого проходит и орбита Земли. Нет больше пустоты пространства! От Земли к Луне и Марсу можно летать на реактивных самолетах и даже на... воздушных шарах. В космосе между планетами сгущаются облака, гремят грозы... А как вам нравится космическая радуга, протянувшаяся на десятки миллионов километров семицветной дугой - от Венеры к поясу астероидов?

Как видите, чем выше этаж, тем смелее фантазия. От простого скафандра к межпланетным штормам. Разумеется, рассмотренные идеи третьего и четвертого этажей - вовсе не единственно возможные для объекта "скафандр". Каждый волен придумывать свой вариант ответа на вопрос, поставленный этажной схемой. Изменение человека, его приспособление к космическому вакууму возможны ведь не только на пути сращения человека с машиной. Не исключается и чисто биологическое совершенствование человека. Как беляевский Ихтиандр, имея жабры акулы, получил возможность жить под водой, так и человек будущего, генетически реконструируя свой организм, может, в принципе, получить возможность долгое время не дышать (например, поглощая кислород, заранее запасенный в тканях организма) и не реагировать на жесткое излучение.

 
Что ж, возьмем пример с фантастов. Вот вам задание: придумайте, пользуясь этажной схемой, совершенно новую идею, взяв за основу очень простой объект... ну, скажем, холодильник. Удачи вам!
 

ШУСТРЫЕ МАЛЫШИ

Как-то, я предложил читателям вообразить себя чайниками. Естественно, не для того, чтобы дать работу психиатрам - речь шла об упражнении по методу синектики. Есть такой изобретательский прием - если хочешь лучше представить себе все недостатки какой-то машины, поставь себя на ее место, войди, так сказать, в образ. Сейчас синектика среди изобретателей не очень популярна, но в шестидесятых годах людей, воображавших себя, скажем, гидравлическими прессами, было довольно много. Не в СССР, впрочем, а в США, где синектика получила широкое распространение. А потом популярность синектики пошла на убыль. Знаете - почему? Из-за инстинкта самосохранения изобретателей. Ведь все они - люди. И потому, даже войдя в образ водопроводного крана, всячески старались не принимать в расчет идеи, в результате внедрения которых кран нужно было бы, например, раздробить на части, или даже вовсе вывинтить и выбросить. Это ведь все равно что помереть - кому ж хочется? И в результате масса новых технических идей так и не появилась на свет во-время. Кто виноват? Система Станиславского...

А между тем, синектика - неплохой метод, и применяют его не только изобретатели. Разве великие Эркюль Пуаро и комиссар Мегрэ не воображали себя на месте убийцы, и таким образом раскрывали преступление? Г.С.Альтшуллер, автор ТРИЗ - теории решения изобретательских задач, - придумал, как использовать достоинства синектики без ее недостатков.

 
Помните один из приемов развития воображения - прием дробления? Раздробить объект на мельчайшие составляющие, такие мелкие, что, сам объект переходит в какое-то иное состояние. Пользуясь синектикой, придет ли вам в голову воспользоваться приемом дробления? Да никогда - кому же хочется, чтобы его раздробили на мелкие частицы? А между тем, в технике очень часто приходится дробить объект, чтобы сделать изобретение.

Вот вам типичное противоречие: объект нужно раздробить (иначе не возникнет новая идея), и объект дробить нельзя (мешает чувство самосохранения изобретателя). Какой выход? Простой. Не нужно воображать на месте машины себя лично. Вообразите своего соседа. А еще лучше - тысячу соседей. Или миллион. Пусть машина состоит из толпы маленьких-маленьких человечков - ваших соседей, которыми можно при случае и пожертвовать ради технического прогресса.

Метод был так и назван - ММЧ - метод маленьких человечков. Метод напоминает синектику: можно посмотреть на объект "изнутри", глазами маленьких человечков. И, в то же время, нет присущего синектике недостатка - вы легко воспринимаете идеи деления или дробления объекта, ведь толпу маленьких человечков всегда можно разделить на две толпы, три или сто.

 
Как-то на одном из занятий по развитию воображения была предложена такая задача: придумайте способ увеличения скорости ледоколов. Вдвое, а лучше втрое. Чего только не предлагали - тут вам и увеличение размеров винта (а как же лед? - ведь большой винт моментально погнется), и новые мощные двигатели (тоже мне воображение - есть уже атомные корабли, куда мощнее?), и гидропушки для разрушения льда перед кораблем... Все говорили - нужно получше дробить лед, чтобы было легче через него протискивать корабль. И никто не сказал - а давайте, ребята, лучше раздробим сам корабль. Действительно, как же - этакая махина, много этажей, что значит - раздробить...

А теперь представьте себе, что ледокол состоит из толпы маленьких человечков, способных делать все, что угодно. Могут сцепиться руками, и тогда ледокол будет прочнее алмаза. А могут разделиться на две толпы. И тогда все просто. Лед мешает двигаться? Так пусть одна толпа человечков бежит над льдом, а другая - под льдом. И лед уже не мешает!

Сказать, конечно, легко, человечки могут двигаться как им удобно. А корабль? Ну, важно увидеть идею - нужно разделить корабль на две части: пусть одна движется над льдом, а другая - под. Грузы в трюме, двигатели - все под льдом. А над льдом - каюты, палубы, надстройки, капитанский мостик и вертолетные площадки... И что же получится - два корабля вместо одного? Нет, все нормально: давайте соединим подводную и надводную части такого ледокола узкими стойками-лезвиями. Они, эти лезвия, будут прорезать во льду узкие щели - как два острых ножа. Это ведь гораздо легче, чем протискивать сквозь лед весь огромный корпус! Этой идее, кстати, три десятилетия, а первый ледокол с двумя корпусами (подводным и надводным) заложили только год назад - очень трудно расставаться со стереотипами...

ММЧ - замечательный метод. Как, скажем, с помощью ММЧ объяснить тепловое расширение и испарение? Очень просто. Вот перед вами кубик, состоящий из толпы маленьких человечков. Вы кубик нагреваете, человечкам становится жарко, верно? Вот они и стараются отодвинуться друг от друга. А если очень сильно кубик нагреть, человечки и вовсе разбегутся в разные стороны - кубик испарится...

С помощью ММЧ сейчас решают очень много изобретательских задач. Согласитесь, для того, чтобы представить себе тот же чайник в виде толпы маленьких человечков, нужно немалое воображение. И учтите, что корпус чайника нужно вообразить толпой человечков одного вида, а воду внутри - человечками другого вида, а крышку чайника - человечками третьего вида. Чтобы все не перемешалось. А потом заставить этих человечков меняться местами, сходиться, расходиться... А можно построить их в несколько рядов... Или заставить драться друг с другом... И представьте себе, какие разные виды чайников появятся в результате!

 

БЫЛ ЛИ ГУЛЛИВЕР ЛИЛИПУТОМ?

Даже самые простые приемы развития фантазии вовсе не так просты, как кажется. Помните прием увеличения? Сделаем объект таким большим, чтобы он стал качественно отличаться от прототипа. Берем дерево и увеличиваем настолько, что вершина его оказывается в космосе.

А ведь можно с равным успехом поступить наоборот (вы еще не забыли о существовании и такого приема?). Дерево растет не на пустом месте - это раз. А во-вторых, мы знаем, что все в мире относительно. Вы хотите, чтобы дерево стало выше облаков? Прекрасно. Можете вытянуть в своем воображении дерево, но можете поступить наоборот и опустить облака до самой земли. Задача окажется решена в обоих случаях, но насколько разными будут ответы!

 
Вот об этом эффекте я и прошу отныне не забывать никогда. Нужно помнить одно простое правило: объект, который вы взялись изменять, существует не сам по себе, а в реальном мире. Попробуйте оставить "объект" в покое, а изменять окружающую среду. Такая "замена переменных" часто приводит к фантастическому результату!

Именно так, заметьте, работала фантазия Джонатана Свифта. Он выбрал в качестве объекта своего воображения английского моряка Гулливера, личность, ничем не примечательную. Он мог, как это мы делали прежде, Гулливера - увеличить его, или уменьшить, или, скажем, ускорить его мышление... Но тогда пропадет сатирический заряд - ведь вся соль, чтобы герой так и остался средним, обыкновенным человеком. И потому Свифт поступил так, будто он изучал курс развития воображения: он начал менять не объект (Гулливера), а окружающую среду. Использовал прием уменьшения - получилась страна лилипутов. Использовал прием увеличения - получилась страна гулливеров. Все по теории!

Естественно, прием "изменять не объект, а окружающую среду" используется не только для развития фантазии. Не забывают о нем и изобретатели, во всяком случае, те из них, кто знает теорию решения изобретательских задач. Вот пример. Представьте себе, что в резервуаре с водой плавает поплавок. Не просто так плавает, а поддерживает одну из частей сложного станка - для амортизации, чтобы эта часть механизма не тряслась во время работы. Вы ж понимаете, станок тяжелый, и поплавок, значит, тоже не маленький, ведь не может изобретатель отменить закон Архимеда! Так вот, станок однажды усовершенствовали, и стал он еще тяжелее, чем был раньше. И оказалось, что, для равновесия, нужно увеличить объем поплавка в десять раз! Это невозможно, сказали конструкторы, поплавок займет половину цеха, нужно искать другую систему амортизации. Искали - и без толка. А решил задачу, между прочим, ученик девятого класса, посещавший занятия в Общественном институте изобретательского творчества. Да что вы мучаетесь, сказал он "задачедателю": не нужно менять поплавок, нужно менять воду, в которой он плавает. Сделаем воду тяжелее в несколько раз, и в ней будет плавать поплавок прежних размеров, вот и все.

 
Хорошее дело - вот и все! Следующий вопрос: как сделать тяжелее обычную воду? Прием объединения: бросим в воду мелкие железные шарики. И не нужно говорить, что шарики потонут. Включите магнитное поле, и шарики останутся плавать в воде. Удельный вес такой "железной воды" увеличится в несколько раз. Поплавок не утонет, станок останется на месте - задача решена. Кстати, мальчик, которого звали Саша Ждан-Пушкин, получил за это изобретение авторское свидетельство.

Изобретательству, как и любви, все возрасты покорны. Конечно, если знать приемы (и не нужно думать, что приемы, используемые в любви, так уж сильно отличаются от изобретательских)...

 

О, ПОЛЕ, ПОЛЕ...

Так и хочется продолжить цитатой из Пушкина: "Кто тебя усеял мертвыми костями?" И даже образ готов: поле новых идей усеяно костями изобретателей, не знающих теории и не владеющих приемами фантазирования.

Однако не о том поле речь. В прошлом номере я рассказал об изобретении, которое сделал ученик девятого класса - о "тяжелой воде", в которой плавали железные шарики, поддерживаемые навесу магнитным полем. Наверно, многие читатели подумали тогда: ну, этот мальчик - вундеркинд, мало того, что он знал теорию фантазирования, так он еще и знал, как действует магнитное поле, и догадался его использовать. Не каждый мальчик на его месте...

 
Уверяю вас: каждый. И мальчик вундеркиндом не был. Более того, по физике в школе имел твердую тройку. Но методы развития воображения и решения изобретательских задач он действительно усвоил. А больше и не нужно было. Ибо среди этих методов есть такой, который называется "вепольным анализом". И если при словах "О, поле, поле..." у кого-то возникает ассоциация с пушкинским Русланом, то при словах "вепольный анализ" практически всем становится не по себе - на ум приходит "математический анализ" с его интегралами или еще более таинственный и сложный "тензорный анализ". А все куда проще (в теории развития воображения, если вы обратили внимания, сложных вещей нет вообще, - семиклассники овладевают правилами не хуже академиков). "Вепольный анализ" всего лишь призывает никогда не забывать о существовании "веполей". А таинственный "веполь" - это всего лишь два слова "вещество" и "поле", объединенные вместе (опять этот прием объединения, даже в словотворчестве!).
 
Итак, прошу запомнить на всю оставшуюся жизнь: в мире нет вещества, а есть вещество и поле, и любой физик скажет, что так оно и есть. Вещество - это наше тело, это корпус машины, это кукла, это станок... А поле - это радио, которое мы слушаем (электромагнитное поле), это поле тяжести, позволяющее нам ходить, а не летать... Физические поля невидимы глазу, и потому о них часто забывают изобретатели, привыкшие иметь дело с механизмами, которые можно пощупать и поломать. А между тем, в изобретательском деле, да и в развитии фантазии, без полей, как без воды, - и ни туды, и ни сюды.

Решил бы упомянутый выше девятиклассник задачу о поплавке, если бы не использовал магнитное поле? Нет, не решил бы. Как не могли ее, эту задачу, решить взрослые дяди, начисто забывшие, что, кроме вещества, есть еще и поле.

Вот вам изобретательская задача, очень важная в наших израильских условиях. Как мы уже хорошо усвоили, воду нужно экономить. А растения нужно поливать, даже если воды мало. В Израиле это противоречие разрешается использованием капельного орошения: вода по трубочкам поступает к каждому растению отдельно. Но, господа, ТРИЗ утверждает, что это еще не решение задачи! Это не предел воображения. Судите сами. Чтобы расходовать воду сверхэкономно, нужно воду, вылетающую из шланга, распылить на мельчайшие капельки. А не получается - капельки, вылетая, слипаются друг с другом, возникают большие капли, вода тратится зря. Что делать?

Любой человек, знакомый с теорией развития воображения и с "вепольным анализом", скажет, не задумываясь: нужно достроить "веполь". Вещество у нас есть - водяные капли. А где поле?

Нам нужно, чтобы капли не липли друг к другу? Значит, нужно, чтобы между каплями существовали некие силы, отталкивающие их друг от друга, силы, не дающие капелькам слипаться. "Обычный" изобретатель, привыкший иметь дело только с тем, что видно глазу, так и останется в недоумении: ну, где он возьмет силы отталкивания? А изобретатель-тризовец скажет: да зарядите вы воду статическим электричеством, наэлектризуйте капли! И они будут сами друг от друга отталкиваться. Кстати, наэлектризовать струю воды очень несложно, а результат вы увидите, когда получите очередной счет за воду: расход драгоценной жидкости для полива уменьшится раза в два...

Метод электризации изобретатели, если не забывают о "веполе", используют очень часто. Скажем, вам нужно быстро и эффективно высушить много меховых шкурок после влажной очистки. Все просто: вы заряжаете шкурки электричеством, слипшиеся шетинки распушиваются, отделяются друг от друга, и мех сохнет в несколько раз быстрее. Или вот, "женское" изобретение: способ быстрого получения пышной прически. Женщину в парикмахерской сажают на... "электрический" стул с изолированными ножками и подводят напряжение. Волосы тут же встают дыбом, их укладывают, как угодно душе заказчицы, и остается лишь побрызгать лаком (кстати, тоже наэлектризованным для экономии материала).

 
Попробуйте решить задачку. Эталон прямолинейности - туго натянутая стальная нить. Но она все равно прогибается под действием поля тяжести. Что нужно сделать, чтобы нить осталась прямой? Задача простенькая, если не забывать о "веполе".
 

ТАЙНЫ "ВЕПОЛЕЙ"

Надо сказать, что изобретатели очень вольно обращаются с известными науке полями. В школе мы проходили, что есть поле электромагнитное, есть поле тяжести, а есть еще еще два, от которых нам ровно никакой пользы: ядерное и слабое. Эти два последних поля в изобретательстве не используются - разве что для развития воображения. А вместо них придумали несколько других полей: механическое и тепловое, оптическое и звуковое... Для облегчения рассуждений. Фантазировать так фантазировать. Если вы получили по уху, значит, на вас подействовали механическим полем, только и всего. А если ошпарились кипятком, значит, ощутили действие теплового поля. Все просто и понятно.

Так вот, и методика развития воображения, и теория изобретательства утверждают: если хотите, чтобы получилась хорошая идея, нужно обязательно использовать какое-нибудь поле. Хотите, допустим, придумать новый фантастический скафандр. Непременно сделайте так, чтобы в этом скафандре использовалось какое-нибудь поле. Например, электромагнитное. Как? А хотя бы так: сделайте матерчатый скафандр двухслойным и зарядите электричеством. Тогда внутренняя оболочка будет отталкиваться от внешней, скафандр станет жестким - что и нужно для работы в космосе.

Кстати, вы умеете управлять полем тяжести? Наверняка нет. Никто пока не умеет. Поэтому поле тяжести в изобретательских "веполях" не используется - только при конструировании новых фантастических идей. Ядерное и слабое поле - тоже. Изобретателям подавай что попроще - поля механические, тепловые, электромагнитные...

Выше я рассказывал о том, как один умный школьник решал задачу о "тяжелой воде" - он предложил бросить в воду много мелких металлических шариков. Мальчик-то умный, но не подумал о "веполе". Если уж действовать по правилам развития воображения, нужно не просто бросить в воду металлические шарики, но еще и намагнитить их. Появляется поле - магнитное, и как упрощаются многие проблемы. Нужно вытащить шарики? Возьмите магнит. Нужно, чтобы шарики собрались у одной из стенок? Возьмите магнит...

 
А вот пример из практики. Иногда танкеры сбрасывают в море воду, загрязненную нефтью. За такие штучки полагается большой штраф, но попробуй, выясни, с какого именно танкера сброшена грязная вода! Нужно создать "веполь": когда на танкер загружается нефть, в нее добавляют мельчайшие магнитные частицы (для каждого танкера - свой сорт). Если в море обнаружили нефтяное пятно, берут пробу нефти и сразу же говорят: это пятно с танкера "Мария Медичи"...
 
Теперь - задача. Как-то для одного эксперимента нужно было сжать стальную пружину, поместить ее внутрь прибора, причем там, чтобы она не разжалась, и оставить. По условиям опыта, пружина должна была разжаться этак через полчаса. Сжать-то просто, но ведь это пружина - она сразу распрямится, едва ее отпустить! Связать? Нельзя, ведь внутри прибора пружина должна быть свободна...

Я уже вижу, как читатели подсказывают: нужно применить магнитное поле. Сжать пружину и держать в таком состоянии с помощью магнитов. А вы себе представляете, какой мощности должен быть такой магнит? Да и вообще - непрактично. Давайте что-нибудь попроще.

Что ж, есть ведь и другие поля. Механическое? Уже предлагали - связать. Остается тепловое. Его и использовали. Сжали пружину и заморозили, поместив в сухой лед. Лед и держал пружину, пока не испарился от тепла. Просто и красиво.

 
Давайте для практики решим еще одну задачу. Кстати, она не так уж проста, в реальной жизни прошло немало лет, прежде чем один режиссер додумался до этой идеи. До какой? Вот условие задачи. Все сейчас знают, что для съемки мультфильма (или, как теперь говорят - анимационного фильма) делают множество рисунков. В десятиминутном фильме - больше 15 тысяч рисунков! Решил некий режиссер снять контурный фильм. Обычно делают так. На фанерный лист цветным шнуром выкладывают рисунок. Оператор снимает кадр, художник передвигает шнур, оператор снимает следующий кадр...

Режиссер долго думал, как бы ускорить этот нудный процесс. Он-то придумал, а вы?

Надеюсь, что и вы тоже. Да, нужно создать "веполь". Есть фанера, есть цветной шнур, а где поле? Нужно взять не простой шнур, а такой, в состав которого входит железный порошок. Или вообще обойтись без шнура, а взять гибкую трубку, наполнить ее железным порошком и... Ну, дальше ясно: поместить за фанерой сильный магнит и управлять движением шнура или трубки. Фильм, на съемку которого прежде уходил месяц, режиссер-изобретатель снял за один рабочий день.

 
А следующую задачу решите сами. Когда в бензобаке автомобиля кончается бензин, это видно на шкале прибора перед водителем. Но согласитесь, прибор - система сложная, может оказать. Иногда стрелка еще далека от нуля, а в баке пусто. Нельзя ли сделать так, чтобы бензобак без всяких приборов сообщал водителю о том, что он пуст?
 

ФИЗИКА И ФАНТАСТИКА

Ах, какая это скучная материя: учить школьную физику. Закон Ома, например. Сила тока прямо пропорциональна чему-то там, сразу и не запомнишь. А если запомнишь, то забудешь. А если не забудешь, то потому только, что изберешь физику своей профессией. А просто так - к чему ж?

Ошибаетесь, господа. Очень романтическая штука - закон Ома. И электризация тел трением - как звучит-то! Я уж не говорю о коронном разряде - это верх фантастики...

Я вовсе не иронизирую. Для человека с развитым воображением любой, самый, казалось бы, сухой закон природы может стать источником вдохновенного полета мысли. И доказательства этому утверждению легко найти в фантастической литературе.

 
В 1974 году советский фантаст В.Грешнов опубликовал рассказ "Диверсия ЭлЛТ-73". Идея рассказа почерпнута из учебника физики один к одному. Все знают, что на поверхности некоторых предметов при трении может возникнуть электрический заряд. Так вот, в одной лаборатории (очень важной и секретной) вдруг стала из рук вон плохо идти работа. Эксперименты срывались один за другим. Разыгрывается драматическая история - начальник катит бочку на подчиненного, подчиненный срывает злость на жене, семья на грани развала, а лаборатория - на грани срыва квартального плана. И лишь в конце динамично закрученного сюжета выясняется, что всему виной... шелковые платья сотрудниц и нейлоновые рубашки сотрудников. Шелк и нейлон очень быстро электризуются трением, эти наведенные электрические поля, никем не учтенные, и влияют на аппаратуру, заставляя ее безбожно врать. Все кончается хорошо, и герой даже получает премию, а читатель на всю жизнь запоминает, что такое электризация тел трением.
 
Фантасты любят использовать электрические заряды и разряды. А если еще воспользоваться уже известными нам приемами фантазирования, например, увеличением, что получится такой замечательный рассказ, как "Олгой-хорхой" И.Ефремова, опубликованный в 1944 году. В свое время это был, можно сказать, рассказ в модном ныне жанре ужаса. У читателя стыла в жилах кровь, когда на героя рассказа нападал огромный двухметровый червяк, он даже не дотрагивался до человека, приближался на метр или два, и человек бледнел, синел, падал и... Да, некоторые даже умирали. В чем дело? Физический закон: действие электростатического поля.
 
Если рассказ И.Ефремова страшен своей убедительностью, то В.Журавлева в рассказе "Человек, создавший Атлантиду", написанном в 1960 году, использовала законы статического электричества в мирных целях. Герой этого рассказа изобрел двухслойный скафандр. Наружная оболочка сделана из пластика, внутренняя - из металла. В сущности, внутренний слой представляет собой фольгу, только очень прочную. При спуске водолаза под воду оболочку заряжают положительным электричеством от электростатического генератора. Из школьной физики мы знаем, что одноименные заряды отталкиваются. Поэтому каждый участок внутренней оболочки стремится оттолкнуть расположенный напротив участок наружной оболочки. Что получается? Скафандр раздувается и становится жестким - что и нужно для погружения на большую глубину.

Кстати, идея не просто красивая, но вполне патентоспособная. Впоследствии такие скафандры были созданы, кто-то получил авторское свидетельство, а фантаст, как всегда, - моральное удовлетворение. А всего-то, использован закон физики, который проходят в шестом классе.

 
Если уж говорить о том, как подстегивает работу воображения романтическая фраза о том, что "одноименное отталкивается", то нужно непременно вспомнить Сирано де Бержерака. В убогости воображения его не обвинишь. А потрясшие современников смелостью идеи Сирано черпал из тривиального даже для того времени учебника физики. В "Государствах и империях Луны" (1656 год) Сирано описал путешествие на Луну при помощи двух магнитов, отталкивающих друг друга. Прошли "всего" два с половиной века, и ту же идею использовал другой фантаст, Т.Герцка, в романе "Заброшенный в будущее" (1895 год). Как просто, оказывается, распалить развитое воображение: достаточно вспомнить сухой и скучный учебник...
 

КУРТКА НА ШАРОВОЙ МОЛНИИ

Давайте еще немного поговорим о том, как простые законы физики позволяют фантастам придумывать удивительные истории. Немного воображения, и...

Вы знаете, что такое коронный разряд? Наверняка забыли, ведь это явление каждый изучал, когда учился в девятом классе школы. Что ж, попробуйте отыскать в библиотеках рассказ Ю.Моралевича "Электролет профессора Мухина". Рассказ старый, опубликован был аж в 1960 году. А речь в нем идет о том, как этот самый профессор построил замечательный самолет, двигатели которого работали на этом самом коронном разряде. Все строго научно, и все совершенно фантастично - и полеты в стратосферу, и борьба с американским шпионом с помощью... коронного разряда. Вы ж понимаете, что для советской литературы шестидесятых годов американские шпионы значили то же, что для современной какие-нибудь крутые мафиози. Каждому времени - свои "герои". Но герои приходят и уходят, а коронный разряд, которым наши контрразведчики их лупили, он-то остается!

Вы когда-нибудь видели шаровую молнию? Наверняка видели - хоть раз в жизни. И если вы не знаете, что же это такое, читайте фантастические рассказы, а не учебники физики. В учебниках написано только, что "явление это мало изучено", а фантасты говорят - "ну и что, давайте используем, а там разберемся". Нормальный подход для людей с богатым воображением. В конце концов, электричеством все пользуются, а кто знает, что такое электрон?

В первой половине ХХ века фантасты наладили прямо-таки серийное производство шаровых молний: сначала это сделал Александр Беляев в повести "Золотая гора" (1929 год), а потом пошло-поехало, и этот феномен явного перепроизводства шаровых молний легко объяснить. Фантасты, как и физики, думали над тем, каким должно быть современное оружие. Атомных бомб еще не было, а шаровая молния, как известно, способна при каждом удобной случае взрываться, выделяя огромную энергию. Фантасты использовали то, что было, как говорится, под рукой, и кстати, опередили науку на многие десятилетия - ведь ученые и до сих пор не знают, с какой стороны подойти к тайне шаровой молнии...

 
Естественно, что, как и ученые, фантасты думали не только о военном, но и о мирном использовании шаровых молний. Например, для накопления огромной энергии в небольшом объеме. Прочитайте, к примеру, рассказ Г.Альтова "Скучный капитан" (1960 год), и если после этого вы не захотите посвятить остаток жизни созданию аккумуляторов на шаровых молниях, значит, вам лучше заниматься не физикой, а коллекционированием марок...

Кстати, в реальности вслед за открытием нового источника энергии следует, как правило, его военное использование (пример - атомная бомба), а уж потом мирное (атомная электростанция). В фантастике - как в жизни. Из чего следует, наверно, что у творческой фантазии свои законы - единые для физики и для полета воображения...

 
Помните, мы говорили о таинственных "веполях", помогающих изобретателям решать сложные творческие задачи? Напомню: веполь - это комбинация вещества и физического поля, например, поля тяжести. Кто первым "изобрел" веполь? Думаете - изобретатели? Нет - фантасты, конечно. Пример - электромагнитные поля, используемые для защиты от нападения противника. "Защитные поля" в фантастике сейчас не менее популярны, чем пресловутые бластеры. Сейчас уже трудно установить, кто первым ввел в фантастику защитные поля и барьеры. Но уже в 1928 году А.Беляев писал о них в повести "Борьба в эфире". А потом они были в "Порте Каменных Бурь" Г.Альтова (1965 год), романе К.Саймака "Все живое" (1965 год) и... Нет, не буду перечислять - попробуйте сами вспомнить.

В романе А.Азимова "Конец Вечности" (1952 год) вся цивилизация представляет собой, по сути, единый веполь: человек (вещество) и техника (поле). Предметы домашнего обихода, одежда, дома, заводы, продукция этих заводов - все является не более чем сложной комбинацией силовых электромагнитных полей.

 
Начиная что-то выдумывать, фантасты не останавливаются на половине пути (я уже говорил, что для развития воображения это одно из основных требований - не останавливаться!). Если придумали веполь, то давайте создадим идеальный веполь - на все случаи жизни. Прочитайте "Ослика и аксиому" Г.Альтова (1966 год). Не стану пересказывать, просто процитирую: "Машина, сделанная из серого магнитного порошка и электромагнитного поля, будет чрезвычайно простой. Ей, например, не нужны винтовые соединения, не нужны шарниры; под действием поля металл может мгновенно менять форму. Меняющийся металл - вот в чем дело."

Ну хорошо, идеальный веполь фантасты уже придумали. А идеальную шаровую молнию? В фантастике ее нет - попробуйте придумать сами.

 

ОБЫЧНЫЕ РОБОТЫ ФАНТАСТИКИ

Настоящий турист может и в сильный ливень с помощью единственной спички разжечь костер. Хороший писатель-фантаст с помощью простых приемов фантазирования придумает вам идею, способную удивить ученых.

Подхожу к полкам с книгами любимых писателей-фантастов. Вот Азимов - обыкновенный "русский" еврей, вывезенный в Америку в детстве. Биохимик. Знаток многих наук. Он много лет "жил" в будущем мире, в мире ХХII века. В воображении, конечно. Написал о будущем сотни книг. Среди них - немало повестей, где будущее просто арена для приключений. А есть у Азимова произведения серьезные и сложные, в которых для предвидения использован весь арсенал науки о прогнозировании.

В середине пятидесятых годов, когда первые счетно-вычислительные машины выполняли в секунду каких-то две-три тысячи операций, а в СССР кибернетика числилась еще в продажных девках империализма, Азимов опубликовал рассказ "Все грехи мира". Обязательно перечитайте его. К сожалению, писателям-фантастам не выдают патентов ни на изобретения, ни на открытия, сделанные героями их произведений. Иначе Азимов обязательно получил бы патент на изобретение глобальной компьютерной системы, к которой современная кибернетика только-только подбирается. Азимов писал о Мультиваке - суперкомпьютере, в который стекается информация обо всем, что происходит на планете. О людях - в том числе. Взял фантаст "обычый" компьютер, использовал обычный прием увеличения...

Ну хорошо, - скажете вы, - Азимов, обладая богатым воображением, сумел разглядеть будущее кибернетики, но ведь о самих-то компьютерах он знал! Они уже были! А вот предсказал бы он своего Мультивака на десять лет раньше? Нет, слабо. Это лишь Нострадамус был способен за три века...

Стоп. Давайте чуть углубимся в прошлое - в начало ХХ столетия. Перечитайте повесть русского писателя Александра Богданова "Красная звезда" (1908 год). Там много интересного, в том числе и таких предвидений, которые сбылись. Русский революционер летит на планету Марс в межпланетном корабле. И вот, что важно - корабль имеет на борту вычислительные устройства и в свободном полете управляется именно ими - компьютерами, как мы сейчас говорим. Кибернетику Богданов, конечно, не предсказал, но модные ныне автоматизированные системы управления (в том числе космические) - несомненно. "Обычный" компьютер и "обычный" прием универсализации.

Богданов патента на изобретение не получил. И Карел Чапек тоже. А ведь роботов изобрел не математик, не инженер, а чешский писатель, и произошло это задолго до первых работ Норберта Винера. В 1921 году Чапек (автор "Войны с саламандрами", многочисленных юмористических рассказов) опубликовал пьесу "РУР - Россумские универсальные роботы". Герои пьесы - созданные искусственно в лабораториях Россума биологические человекоподобные автоматы. Роботы - назвал их Чапек. И когда четверть века спустя кибернетика делала первые шаги, когда уже ученые и инженеры всерьез задумались о механических подобиях людей, они заимствовали название из произведения фантаста, фактически отдав ему пальму первенства. А всего-то: "обычный" объект (человек) и "обычный" прием искусственности...

Что ж, скажет читатель, фантасты, пользуясь приемами развития воображения, умеют предсказывать будущее науки и техники, а астрологи предсказывают будущее личности, общества, пользуясь звездными картами. Согласен, каждому конкретному человеку писатель-фантаст ничего не предскажет - он не занимается частной практикой, а пишет романы. И в этих романах (повестях, рассказах) фантаст детально описывает все, что произойдет с обществом (и человеком в обществе), если сбудется конкретное научно-техническое или социальное предсказание. Что произойдет с нами, если будут действительно построены человекоподобные роботы. Или - если будет создана всемирная компьютерная система.

В фантастике сотни интереснейших идей, связанных с будущим кибернетики. Многие сбылись. Многие сбудутся. Румынский писатель Раду Нор (рассказ "Живой свет", 1959 год) писал о думающей машине размером с молекулу (вспомните прием уменьшения!). Станислав Лем в романе "Непобедимый" - о цивилизации микророботов. Это - седьмое поколение компьютеров, проблема, над которой ученые будут думать всерьез в начале будущего века. Перечитают ли они Лема? Знают ли о существовании приема уменьшения?

Подумайте, пожалуйста над таким вопросом. Астрологи умеют предсказывать будущее людей и стран, экстрасенсы умеют лечить почти все болезни, причем сразу у сотен людей, сидящих в зале. Телепаты общаются с высшими силами. Такие люди были всегда. А наука с техникой насчитывают несколько столетий. Так почему же наш мир - это мир науки и техники, а не мир, где премьер-министр - телепат и экстрасенс (вот уж кто нужен на переговорах с арабами!) и где главный врач клинической больницы - последователь Алана Чумака?

Почему? Ведь они умеют все, а ученые - так мало! И никто еще ведь не отменил естественного отбора - побеждает сильнейший, тот, от кого больше пользы.

 

"ТИТАН" ПОДНИМАЕТ ЯКОРЬ

Все в природе закономерно. Есть законы физики, есть законы развития техники, есть законы фантазирования. Бывает, так хочется наплевать на все законы и нафантазировать что-то этакое... А потом перечитываешь и видишь: эта идея получена с помощью приема увеличения, а эта - с помощью приема "наоборот". Скучно? Нет, как раз наоборот - очень увлекательное это дело: пользуясь "элементарными" законами природы, техники и фантазии предвидеть будущее получше всяких пифий, экстрасенсов и астрологов. Хотите примеры?

Летом 1944 года к не очень-то процветавшему американскому писателю-фантасту Л.Картмиллу нагрянули агенты ФБР и устроили обыск. Действуя в лучших традициях своих коллег из КГБ, они так и не объяснили изумленному писателю, что им, собственно, было нужно. На следующий день обыск произвели у Д.Кемпбелла, фантаста, куда более известного, но главное - издателя того самого журнала "Удивительная научная фантастика", где публиковал свои рассказы Л.Картмилл.

Потом был допрос. У писателя спросили: кто и когда передал ему совершенно секретные сведения, которые легли в основу рассказа "Крайняя черта", незадолго до того опубликованного в журнале? Никто и никогда, - отвечал автор, - все это плод творческой фантазии. Не может того быть, - утверждали агенты и повторяли свое: кто и когда...

Напомню - шел 1944 год, до первого испытания атомной бомбы оставалось несколько месяцев, до первого ее "публичного представления" - больше года. Работы над "Манхэттэнским проектом" велись в обстановке жесточайшей секретности, в печати запрещено было всякое упоминание слов "тяжелая вода", "уран". А некий фантаст Л.Картмилл в своем рассказе очень подробно описал не только процесс деления урана, но и "раскрыл секрет" критической массы, рассказал об устройстве атомной бомбы... Думаю, что, произойди нечто подобное в СССР, не только автор, но вся редакция журнала на следующий же день оказалась бы либо на Колыме, либо гораздо дальше. ФБР ограничилось взбучкой - может, действительно поверило в творческое воображение фантаста?

 
Не знаю, что в действительности думали агенты ФБР, но точно знаю, что никакими парапсихологическими способностями Л.Картмилл не обладал, никакие пришельцы из будущего его не посещали, и к общему информационно-энергетическому полю планеты он тоже не был подключен. Загадка разрешалась просто - Л.Картмилл писал так называемую "жесткую" научную фантастику. Он знал о первых, не засекреченных еще работах в области ядерного распада. Он знал об идеях своего предшественника Герберта Уэллса, еще в 1913 году описавшего в романе "Освобожденный мир" первую войну с применением атомного оружия. И плюс воображение... Именно оно помогло связать в цепь разрозненные факты, найти ненайденные закономерности.
 
История с Л.Картмиллом показывает, насколько важны в предсказаниях точность деталей и знание законов развития природы, техники, общества - именно то, чего всячески избегают многочисленные экстрасенсы-прорицатели. Во всяком случае, когда экстрасенс утверждает, что 1999 год будет для России трудным, пенсии не выплатят, а промышленность не станет работать лучше, вряд ли такое предсказание говорит о богатом воображении.

Но история с Л.Картмиллом говорит и о другом. Опубликуй он свой рассказ на семь лет раньше - и все прошло бы тихо и незаметно: ученые тогда еще только приступали к экспериментам, которые привели к открытию цепной ядерной реакции, о критической массе никто слыхом не слыхивал, а фантаст... ну, мало ли о чем они там пишут? На предсказание фантаста никто бы не обратил внимания. И лишнее тому подтверждение - другая история.

...В Англии построен огромный пассажирский лайнер "Титан". Самый большой, быстроходный и роскошный. Билеты на первый трансатлантический рейс доступны только очень богатым людям. На борту "Титана" собирается высшее общество, корабль должен поставить рекорд скорости и завоевать приз самому быстроходному лайнеру. В Северной Атлантике поздняя и холодная весна, но, стремясь в кратчайший срок преодолеть расстояние до берегов Америки, "Титан" идет полным ходом - и темной апрельской ночью сталкивается с айсбергом. Насосы не успевают откачивать воду, спасательных шлюпок не хватает, большая часть пассажиров и команды обречена на гибель...

Уверен, что вы сейчас обвиняете меня в неточности - название лайнера приведено не совсем правильно: он назывался ведь не "Титан", а "Титаник", и история его гибели известна всем. Но я описал здесь вовсе не реальную историю гибели "Титаника" в 1912 году! Это - сюжет романа "Тщетность" английского автора М.Робертсона. Роман был опубликован в 1898 году...

Точность предсказания не ограничилась сюжетом трагедии и названием лайнера. Сравните числа. "Титан" М.Робертсона: длина 260 метров, водоизмещение 70 тысяч тонн, мощность двигателей 50 тысяч лошадиных сил, скорость 25 узлов, четыре трубы, три винта. А вот характеристики реального "Титаника": 268 метров, 66 тысяч тонн, 55 тысяч лошадиных сил, 25 узлов, четыре трубы, три винта.

Если бы роман "Тщетность" вышел из печати этак за неделю до отплытия "Титаника", какая была бы сенсация! Но он был опубликован "слишком рано", и в 1912 году о нем давно успели забыть, тем более, что М.Робертсон не обладал литературным талантом Г.Уэллса.

 

ВСЕГО ЛИШЬ "ЛЕТАЮЩИЕ ТАРЕЛКИ"

История с "Тщетностью" Робертсона и "Крайней чертой" Картмилла показывает: мало владеть приемами фантазирования, чтобы делать правильные предсказания будущего. Естественно, нужно знать историю науки, техники, общества. И тогда не нужны окажутся "связи с космической энергией", "экстрасенсорные способности" и астрологические таблицы.

Древнегреческая Кассандра была, прежде всего, умной женщиной и видела куда что идет. Она была дочерью Приама, царя Трои, знала все дворцовые тайны и могла себе представить, чем все кончится. Она видела тенденции там, где остальные не видели ничего, кроме хаоса фактов! Человек с тренированным воображением умеет не только пользоваться приемами фантазирования, но еще и знает, какой именно из реальных фактов нужно изменить, чтобы получить с помощью нужного приема правильное предсказание будущего события.

Л.Картмилл вовсе не был допущен к секретам "Манхэттэнского проекта", а М.Робертсон не был профессиональным корабелом. Но есть законы природы. Законы физики, химии. Есть закономерности в истории развития обществ. Знающий эти законы имеет массу преимуществ перед незнающими, он может даже представить себя богом. Любимый, кстати, прием фантастов: герой попадает в плен к аборигенам, его приговаривают к смерти, вот-вот начнется казнь, и тут герой вспоминает, что именно сейчас должно начаться солнечное затмение. "Остановитесь, - кричит он, - или я сейчас уничтожу солнце!" Прием безошибочный - герой знает то, чего не знают другие.

Так вот, кроме законов природы и общества, есть и законы развития технических систем. Зная их, не так уж трудно представить, как пойдет в ближайшие десять-двадцать лет развитие, скажем, кораблестроения или ракетостроения. Инженеры-изобретатели стали серьезно изучать эти законы в пятидесятых годах. Советский изобретатель и писатель-фантаст Г.С.Альтшуллер (любители фантастики знают его литературный псевдоним - Генрих Альтов) создал, объединив эти законы, новую науку - теорию творческого мышления.

Собственно, любой серьезный фантаст, пишущий о будущем, о грядущих научных открытиях или изобретениях, даже если он незнаком с теорией развития технических систем, вынужден сопоставлять факты. И он чаще прочих (и порой - чаще ученых!) приходит к верным выводам, потому что, кроме знания и интуиции, обладает редким, к сожалению, даром - богатым воображением.

Именно оно позволило фантастам описать все варианты встреч с пришельцами за многие годы до того, как такие (в точности!) описания заполнили страницы журналов и газет. Когда я читаю очередное сообщение о "летающей тарелке в Бразилии" или о том, как "пришельцы производят сексуальный эксперимент с тетей Машей", я удивляюсь вовсе не воображению "очевидцев", но как раз - полному отсутствию воображения! Ведь все это уже приходило в голову фантастам, и все это они уже описали на страницах своих произведений. Но одно дело, когда читаешь нечто в книге с грифом "НФ", и совсем другое, когда то же самое описано со слов некоего очевидца с указанием точной даты и места!

Историю, придуманную профессионалом-фантастом, всегда можно отличить от аналогичной байки, рассказанной человеком с небогатым воображением. У фантаста - точность деталей. У экстрасенсов, "общающихся с космосом", деталей обычно мало - нехватает воображения...

Итак, знание законов природы, техники и общества плюс богатое воображение - вот причина успеха прогнозов фантастов. Может, это менее романтично и загадочно, чем "поглощение космической энергии"?

Не знаю, как вам, но мне лично больше по душе идея о том, что человек сам способен выдумать нечто, совершенно новое и необычное, нежели идея о том, будто это новое подсказано космическими силами, пришельцами или "единым информационным полем". Тем более, что и космические силы, и пришельцы, и единое поле информации уже были в фантастике...

 
(Продолжение следует)
 

вверх
оглавление



(c) 1997-2004 Центр ОТСМ-ТРИЗ технологий
(с) 1997-2004 OTSM-TRIZ Technologies Center


http://www.trizminsk.org

5 Sep 2004