Последние четыре года я проводил факультатив по теме “Ознакомительный курс ТРИЗ” в 10-м физматклассе гимназии №35 г. Екатеринбурга. Курс объемом 15 часов проводился в течение месяца в феврале - марте. Такой небольшой курс безболезненно встраивается в учебный процесс.
Цель курса - знакомство с основными понятиями ТРИЗ и стимулирование интереса к изучению ТРИЗ.
На занятиях, которые по характеру ближе всего к семинарским, учащиеся знакомились с понятием ресурса, ИКР, противоречия, веполя и почти непрерывно у доски решались задачи, причем в основном нетехнические, а по школьным предметам (главным образом по физике и математике).
Заключительные 1 - 2 урока по возможности проводятся в компьютерном классе, где по специально разработанной компьютерной программе преподаватель принимает зачет, а остальные учащиеся работают с обучающей программой по ТРИЗ типа “Дебют ” И.Л.Викентьева.
Главным средством для достижения цели курса являются задачи, которые должны быть достаточно простыми (с точки зрения ТРИЗ), но нестандарными и интересными для школьника. Например.
Задача 1. “Девять точек в квадрате”.
На листе бумаги расположены девять точек на середине сторон, в вершинах и в центре квадрата. Требуется соединить эти точки одним росчерком ломаной, состоящей из минимального количества отрезков.
Решение.
- Легко соединить точки ломаной из пяти прямых...
- Можно ли с меньшим количеством прямых? Какие имеются ресурсы ?
- Есть только пространственный ресурс...
- Т.е. условиями задачи не запрещается выходить за пределы квадрата. Важно отметить, что этим шагом мы преодолеваем
психологический барьер, который неявно создают условия задачи.
- Тогда точки можно соединить четырьмя прямыми!
- А можно ли меньшим количеством? Сформулируем ИКР и воспользуемся имеющимися ресурсами.
- ИКР: точки сами ложатся на одну прямую! Ресурс - тот же.
- Но это невозможно: через две точки можно провести только одну прямую, и поэтому четыре различные точки, лежащие на перпендикулярных сторонах квадрата не могут лежать на одной прямой!
- Однако, попробуем следовать ИКР, используя ресурсы.
- Но вышеприведенное доказательство невозможности верно!
- Да, оно верно, если мы находимся в плоскости, а, если выйти за ее пределы, т.е. сделать попытку еще раз преодолеть психологический барьер?
- Но тогда нужно деформировать и сам квадрат...
- А разве условия задачи запрещают нам деформировать лист бумаги? Это еще один психологический барьер.
- Тогда, если сделать из квадрата “гармошку”, ИКР достигается!
В конце курса проводится анонимное анкетирование. Полученные результаты позволяют сделать вывод о том, что поставленная цель достигается. Подавляющее большинство ответило “да” на вопросы анкеты и оценило работу преподавателя в 5 баллов:
Полезно ли изучение ТРИЗ для интеллектуального развития?
Может ли изучение ТРИЗ повысить вашу успеваемость?
Может ли изучение ТРИЗ принести пользу в вашей дальнейшей жизни?
Интересны ли были занятия по ТРИЗ?
Целесообразно ли проведение дополнительных занятия по углубленному изучению ТРИЗ?
|